
Navier-Stokes-like equations for traffic flow

R. M. Velasco and W. Marques, Jr.*
Departamento de Física, Universidad Autónoma Metropolitana, 09340, Iztapalapa, México

�Received 3 June 2005; published 5 October 2005�

The macroscopic traffic flow equations derived from the reduced Paveri-Fontana equation are closed starting
with the maximization of the informational entropy. The homogeneous steady state taken as a reference is
obtained for a specific model of the desired velocity and a kind of Chapman-Enskog method is developed to
calculate the traffic pressure at the Navier-Stokes level. Numerical solution of the macroscopic traffic equations
is obtained and its characteristics are analyzed.
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I. INTRODUCTION

Traffic flow problems have attracted the attention of many
researchers because of the great variety of phenomena
present in the motion of vehicles along a highway or in urban
networks. The complexity of their behavior constitutes an
interesting challenge not only from the practical, but also
from a fundamental point of view. Several approaches to
study traffic problems can be found in the literature �1–4�.
Macroscopic models consider traffic problems as a com-
pressible flow to be described by macroscopic variables such
as the density, the average velocity, and the velocity vari-
ance. The time evolution of the variables corresponds to bal-
ance equations in which some parameters are introduced to
take into account the drivers or the highway characteristics.
Despite the criticisms against macroscopic models, we must
say that they allow for a general understanding of some traf-
fic phenomena.

In the literature there are also some schemes in which a
gas-kinetic approach has been developed. Prigogine �5�
wrote a kinetic equation for a velocity distribution function
taking into account a collective relaxation for it. It is well
known that such kinetic equation has some shortcomings,
which have been overtaken by the Paveri-Fontana �6� kinetic
equation. Though the complete Paveri-Fontana equation has
not been solved even for simple cases, it has been studied to
support macroscopic approaches like the ones worked by
Helbing �7� and Wagner �8�. The Paveri-Fontana equation
describes the time evolution of a distribution function in a
phase space where both the instantaneous as well as the de-
sired velocities for each vehicle play a role. It considers an
individual relaxation of the instantaneous velocity to the de-
sired velocity with a given relaxation time for each vehicle
and a binary interaction term.

The macroscopic equations for the relevant variables can
be derived from the kinetic equation averaging over the in-
stantaneous velocity. This is a well-known procedure in ki-
netic theory �9�, and its application in traffic flow problems
drives us to the variables mentioned before. The method is
analogous to the derivation of the Euler and Navier-Stokes

equations in fluids theory and we must say that the closure
problem is also present. It means that there are some quan-
tities which must be evaluated with constitutive relations in
order to obtain a set of closed equations. The analogy with
the Chapman-Enskog method in kinetic theory gives us a
clue to proceed, provided we have an analogy with the equi-
librium, or at least the local equilibrium distribution func-
tion.

In this work we propose the use of the maximization of
the informational entropy to construct the basic distribution
function to be used as the equivalent of a zeroth-order dis-
tribution function. The informational entropy to be maxi-
mized is restricted by the values of the macroscopic variables
we have chosen to describe the system �10�. Accordingly, the
distribution function consistent with the maximization of the
informational entropy allows for the calculation of the con-
stitutive quantities needed to complete the closure hypoth-
esis. All these calculations can be made provided we intro-
duce a model for the desired velocity, it means that we must
make a guess about the average behavior in the desired ve-
locity of drivers.

This procedure gives us a set of equations which we
called as Euler equations, because the calculated traffic pres-
sure is given in terms of the density and the velocity but not
in terms of spatial gradients. Also an extension of a kind of
Chapman-Enskog method and a BGK collective time ap-
proximation for the interaction term in the Paveri-Fontana
equation have allowed us to construct a corrected distribu-
tion function. It contains the collective relaxation time as a
parameter but otherwise is given in terms of density, velocity
and the gradient of the velocity. The correction for the traffic
pressure becomes proportional to the velocity gradient in
such a way that we can follow the similarity with fluid theory
and call this approximation the Navier-Stokes regime. The
macroscopic equations resulting from this procedure are the
main goal of this paper, where we derive and solve them for
some initial conditions.

The paper is organized as follows: In Sec. II we briefly
recall the Paveri-Fontana equation, while Sec. III will be
devoted to the construction of the macroscopic traffic equa-
tions. In Sec. IV we obtain the distribution function corre-
sponding to a homogenenous and steady state as well as the
informational entropy for an arbitrary state in the system. In
Sec. V we introduce the analogous of the Chapman-Enskog
method to calculate a first order correction and close the
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macroscopic set of equations, whereas in Sec. VI we study
the linear stability for the resulting macroscopic equations. In
Sec. VII we give the numerical solution of the traffic equa-
tions for two sets of initial conditions and finally in Sec. VIII
we give some remarks.

II. THE PAVERI-FONTANA EQUATION

In order to correct some deficiencies of the gas-kinetic
traffic model proposed by Prigogine and co-workers �5�,
Paveri-Fontana developed a Boltzmann-type treatment for
traffic flow which takes into account individual driver’s ac-
celeration behavior �6�. In the Paveri-Fontana model the traf-
fic state is characterized by the one-vehicle distribution func-
tion g�x ,c ,w , t� such that g�x ,c ,w , t�dxdcdw gives at time t
the number of vehicles in the road interval between x and
x+dx and in the �actual� velocity interval between c and c
+dc with desired velocity between w and w+dw. For a uni-
directional single-lane road on which passing is allowed to
occur, the distribution function satisfies the following gas-
kinetic traffic equation:
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� +
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�

= f�x,c,t��
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�1 − p��c − c��f�x,c�,t�dc�, �1�

where

f�x,c,t� = �
0

�

g�x,c,w,t�dw �2�

is the one-vehicle velocity distribution function.
The right-hand side of Eq. �1� is the so-called interaction

�or collision� term and describes the deceleration processes
which are caused by slower vehicles that cannot be immedi-
ately overtaken. The first part of the interaction term corre-
sponds to situations where a vehicle with velocity c� must
decelerate to velocity c causing an increase of the distribu-
tion function, while the second one describes the decrease of
the distribution function due to situations in which vehicles
with velocity c must decelerate to even slower velocity c�. In
the derivation of the interaction term the following assump-
tions have been made:

�1� vehicles are regarded as pointlike objects;
�2� a slower vehicle can be immediately overtaken with

the probability p;
�3� the velocity of a slow vehicle is not affected by inter-

actions or by the fact of being passed;
�4� the slowing down process is instantaneous, i.e., there

is no braking time;
�5� only two-vehicle interactions have been considered;

and
�6� the two-vehicle distribution function is factorized in

one-vehicle distribution functions, in such a way that a kind
of vehicular chaos is assumed.

In contrast to Prigogine, an individual relaxation process
was enclosed by Paveri-Fontana in the acceleration term ap-
pearing on the left-hand side of the gas-kinetic traffic equa-
tion. Assuming that drivers approach their �constant� desired
velocity exponentially in time with a constant relaxation time
�, we can write

dc

dt
=

w − c

�
and

dw

dt
= 0. �3�

The acceleration law �3�1 seems to be a good approximation
since most drivers gradually reduce the acceleration as they
approach their desired velocity.

The main shortcoming of Paveri-Fontana’s traffic equa-
tion is the great difficulty encountered in seeking analytical
solutions in all cases in which the interaction process cannot
be neglected. To overcome this difficulty, we integrate equa-
tion �1� with respect to desired velocity and obtain the re-
duced Paveri-Fontana equation

�f
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+ c
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+

�

�c
� f

V0 − c

�
�

= f�x,c,t��
0

�

�1 − p��c� − c�f�x,c�,t�dc�, �4�

where

V0�x,c,t� = �
0

�

w
g�x,c,w,t�

f�x,c,t�
dw �5�

is the desired average velocity for vehicles moving with the
actual velocity c. Besides, in the derivation of the reduced
Paveri-Fontana equation �4� we have asked the one-vehicle
distribution function g�x ,c ,w , t� to satisfy the following
boundary conditions:

lim
w→0

g�x,c,w,t� = 0 and lim
w→�

g�x,c,w,t� = 0. �6�

Closing this section we want to remark that the main dif-
ference between the reduced Paveri-Fontana’s traffic equa-
tion and the Prigogine’s formulation lies in the acceleration
term which in the Prigogine equation is modeled by a col-
lective relation term towards an equilibrium distribution
function.

III. MACROSCOPIC TRAFFIC EQUATIONS

The reduced Paveri-Fontana traffic equation allows the
derivation of dynamic equations for macroscopic quantities
like the vehicular density

��x,t� = �
0

�

f�x,c,t�dc �7�

and the average velocity

V�x,t� = �
0

�

c
f�x,c,t�
��x,t�

dc . �8�

The integration of the reduced Paveri-Fontana traffic
equation �4� over all values of the actual velocity c yields the
continuity equation
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��

�t
+

��V

�x
= 0, �9�

while the velocity equation

�� �V

�t
+ V

�V

�x
� +

�P
�x

= �
W − V

�
− ��1 − p�P �10�

can be obtained if we multiply the reduced Paveri-Fontana
equation with c and integrate over all values of the actual
velocity. In the above equation we have introduced the aver-
age desired velocity

W�x,t� = �
0

�

V0�x,c,t�
f�x,c,t�
��x,t�

dc �11�

and the so-called traffic pressure

P�x,t� = �
0

�

�c − V�2f�x,c,t�dc , �12�

which is related to the velocity variance ��x , t� through the
relation

P�x,t� = ��x,t���x,t� . �13�

At this point it is important to emphasize that the macro-
scopic traffic equations �9� and �10� can only be obtained if
the one-vehicle velocity distribution function f�x ,c , t� satis-
fies the boundary conditions

lim
c→0

f�x,c,t� = 0 and lim
c→�

f�x,c,t� = 0. �14�

In order to derive a macroscopic traffic model analogous
to the Navier-Stokes description for ordinary fluids, we shall
assume that all macroscopic information of the system can
be obtained from the vehicular density and the average ve-
locity, i.e., we construct a traffic model based only on these
variables. However, the traffic pressure is not known in terms
of them, it means that the set of equations we have just
derived is not closed, a fact which prevents us to find a
solution. To obtain a closed set of equations we need a con-
stitutive relation for the traffic pressure in terms of the ve-
hicular density, average velocity and their corresponding spa-
tial gradients. The similarity of this problem with the
description of fluids invites us to name this set of equations
as Euler-type traffic equations when we write the constitutive
equations in terms of the vehicular density and average ve-
locity, and Navier-Stokes-like traffic equations when they are
written also in terms of the first-order spatial gradients.

For this purpose, we shall apply an approximation similar
to the Chapman-Enskog method and find a first-order ap-
proximation for the distribution function which solves the
reduced Paveri-Fontana traffic equation. In the Chapman-
Enskog method we write the velocity distribution function as

f�x,c,t� = f �0��x,c,t� + f �1��x,c,t� + . . . , �15�

where f �i��x ,c , t� represents sucessive approximations for the
distribution function. Assuming that the values of the vehicu-
lar density and average velocity are determined only by the
zeroth-order approximation for the distribution function, we

can easily derive the following conditions for i�1:

�
0

�

f �i��x,c,t�dc = 0 and �
0

�

cf �i��x,c,t�dc = 0. �16�

However to go further we need the zeroth-order distribution
function f �0��x ,c , t�, which in this case will be determined
according to a maximization procedure for the informational
entropy.

IV. THE INFORMATIONAL ENTROPY

First of all, let us consider the homogeneous steady state
of the system as a reference to construct the informational
entropy. The distribution function corresponding to this ho-
mogeneous steady state will be the solution of the reduced
Paveri-Fontana equation when there is no dependence on
time and space,

�

�c
� fe�c�

V0�c� − c

�
� = �e�1 − p��Ve − c�fe�c� , �17�

where fe�c� is the distribution function we are looking for.
Moreover, the vehicular density �e and the average velocity
Ve corresponding to this homogeneous steady state are given
by

�e = �
0

�

fe�c�dc and �eVe = �
0

�

cfe�c�dc . �18�

To find the stationary and homogeneous solution of the re-
duced Paveri-Fontana equation �17� we must provide an ex-
pression for the desired average velocity V0�c� of vehicles
moving with actual velocity c. Here, we shall assume that

V0�c� = 	c �	 
 1� , �19�

where 	 is a positive constant. Relation �19� indicates that
drivers desired velocity increases as their actual velocity in-
creases, i.e., drivers want to drive even more and more fast.
It should be noticed that relation �19� represents a model for
an average over the desired velocity of drivers as can be seen
in Eq. �5�. It is clear that this is not a unique model but just
a sound one. Though this model may produce desired veloci-
ties tending to infinity, let us recall that the distribution func-
tion goes to zero as the velocity increases so that the number
of vehicles with velocities tending to infinity goes to zero.
Hence, the solution of Eq. �17� leads to the following expres-
sion for the homogeneous steady distribution function:

fe�c� =
�

����
�e

Ve
��c

Ve
��−1

exp�−
�c

Ve
� , �20�

where

� =
�e�1 − p�Ve�

	 − 1
, �21�

is a dimensionless constant characteristic of the homoge-
neous steady state and ���� is the gamma function. Note that
the constant � depends on several traffic parameters like the
relaxation time, the probability of overtaking, the model con-
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stant we are using for the average desired velocity, the ve-
hicular density and the average velocity of the homogeneous
steady state.

Now let us define the informational entropy of this system
in terms of the zeroth-order distribution function, relative to
the homogeneous steady state, as

s�x,t� = − �
0

�

f �0��x,c,t�ln� f �0��x,c,t�
fe�c�

�dc . �22�

We notice that this informational entropy is in fact a change
in entropy with respect to the entropy in the steady state
�11–13�. The zeroth-order approximation for the one-vehicle
velocity distribution function follows through a maximiza-
tion procedure of the informational entropy by taking into
account the restrictions imposed by the values of the macro-
scopic variables that we have chosen to describe the system.
In the traffic model we present here we shall take the density
and the average velocity of the system to be known. The
distribution function must be consistent with the values of
these variables, which in fact are functions of road position
and time. Those variables are known in principle from the
measurements taken for special case studies, though in this
work we determine them by solving the set of resulting equa-
tions. Hence, we construct the following functional of the
distribution function:

F = − �
0

�

�ln f �0��x,c,t� − ln fe�c� + 
 + �c�f �0��x,c,t�dc ,

�23�

where the Langrange multipliers 
 and � depend on position
and time. The maximization procedure allows us to find a
distribution function which satisfies the condition �F /�f �0�

=0 and it is given by

f �0��x,c,t� = fe�c�exp�− 1 − 
 − �c� . �24�

The determination of the Lagrange multipliers follows
from restrictions �7� and �8� which we have imposed in the
maximization procedure of the informational entropy. How-
ever, we verify that such determination requires the knowl-
edge of the homogeneous steady distribution function. As we
have seen above, the homogeneous steady state distribution
function depends on the model chosen for the average de-
sired velocity. This means that all properties we can deduce
from this scheme must be consistent with the model. Taking
into account the expression �20� for the homogeneous steady
distribution function, the direct substitution of the velocity
distribution function �24� into the definitions of the vehicular
density and average velocity drives us to

� =
�

V
�1 −

V

Ve
� and exp�1 + 
� =

�e

�
� V

Ve
��

. �25�

Hence, the zeroth-order velocity distribution function be-
comes

f �0��x,c,t� =
�

����
�

V
��c

V
��−1

exp�−
�c

V
� , �26�

where we can notice that the structure of this zeroth-order
distribution function is the same as the one for the homoge-
neous steady state. In fact it resembles what we immediately
identify with a kind of local distribution function, since the
velocity distribution function �26� can be obtained from the
homogeneous distribution �20� by replacing the density �e by
��x , t� and the velocity Ve by V�x , t�, i.e., by their local val-
ues along the highway. However it is important to emphasize
that expression �26� comes from the maximization of the
informational entropy.

Consistently with this zeroth-order approximation for the
velocity distribution function we calculate the zeroth-order
relation for the traffic pressure, i.e.,

P =
�V2

�
. �27�

From Eqs. �13� and �27� we can see that the velocity variance
�=V2 /� in the zeroth-order approximation is proportional to
the square of the average velocity, a fact which can be ob-
served in empirical traffic data �3,14�.

Insertion of the constitutive relation �27� for the traffic
pressure into Eqs. �9� and �10� leads to the so-called Euler-
type traffic equations

d�

dt
= − �

�V

�x
, �28�

dV

dt
= −

V2

��

��

�x
−

2V

�

�V

�x
+

	 − 1

�
V − ��1 − p�

V2

�
, �29�

where

d

dt
=

�

�t
+ V

�

�x
�30�

denotes the material time derivative. The set of Eqs. �28� and
�29� are now closed and in principle can be solved for a
given initial condition. This set is called the Euler-type traffic
equation because the traffic pressure is given only in terms of
the density and the average velocity, which are the macro-
scopic variables chosen to describe the problem. It resembles
the hydrostatic pressure in fluids where the local equation of
state is given in terms of local variables only. A linear sta-
bility analysis of the set of equations showed that the homo-
geneous steady state is unstable under small perturbations.
Then to go further we must calculate at least a first-order
distribution function which takes us away from the local
state described by the zeroth-order distribution function.

V. NAVIER-STOKES-LIKE TRAFFIC EQUATIONS

In order to determine now the first-order approximation
for the velocity distribution function we introduce the expan-
sion �15� into the reduced Paveri-Fontana equation. Utilizing
the fact that f �1��x ,c , t� will usually be small compared to
f �0��x ,c , t� we get
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f �0���� c

V
− 1�2

− 2� c

V
− 1� − 1	 �V

�x

= − �
0

�

L�c,w
x,t�f �1��x,w,t�dw , �31�

where

L�c,w
x,t� = ��1 − p��c − V���c − w�

+ �1 − p�f �0��x,c,t��c − w� . �32�

In the derivation of the above expression we have neglected
all nonlinear terms and eliminated the material time deriva-
tives by using the Euler-type traffic equations. If we apply
the so-called relaxation time approximation �see Helbing �7��

�
0

�

L�c,w
x,t�f �1��x,w,t�dw �
f �1�

�0
, �33�

we get the following expression for the first-order approxi-
mation of the distribution function:

f �1��x,c,t� = − f �0��0��� c

V
− 1�2

− 2� c

V
− 1� − 1	 �V

�x
,

�34�

where �0 is the mean free interaction time, i.e., the average
time between sucessive vehicular interactions.

With Eqs. �15�, �26�, and �34� we can now calculate the
first-order relation for the traffic pressure, namely,

P =
�V2

�
�1 − �*

�V

�x
� , �35�

where

�* = 2�0
1 + �

�
�36�

plays the role of an effective relaxation time. It measures the
relevance of the deviation of the traffic pressure form the
Euler value which can be seen as the equivalent of the hy-
drostatic pressure. Note that the above constitutive relation
for the vehicular traffic pressure has a similar form to the
Navier-Stokes relation for ordinary fluids since in non-
equilibrium situations both depend on the velocity gradient.
In fact, a viscosity coefficient can be identified as �
=�V2�* /� which is a function of the state of the system
through the density and the average velocity.

The Navier-Stokes-like set of equations are given by the
density equation �28� and the velocity equation, which now
is written as follows:

dV

dt
= −

V2

��
�1 − �*

�V

�x
�� ��

�x
+ 2

�

V

�V

�x
+ �2�1 − p��

+
�*

�
V2�2V

�x2 +
	 − 1

�
V . �37�

We remark that �* depends on the collective relaxation time
�0 we introduced to calculate the collision term in the kinetic
equation. Hence, our model contains two free adjustable pa-

rameters, 	 for the desired velocity model and �0 for the
collision term.

VI. LINEAR STABILITY ANALYSIS

Our aim in this section is to determine if the Navier-
Stokes-like traffic equations predicts unstable traffic �e.g.,
the formation of density clusters and stop-and-go traffic� in
the range of densities where the Paveri-Fontana equation and
consequently our model is valid. The instability region is
found via a linear stability analysis with �15�

��x,t� − �e

�e
= �̄ exp�i�x + �t� and �38�

V�x,t� − Ve

Ve
= V̄ exp�i�x + �t� ,

where � is the wave number of the perturbations and � is the
growth parameter.

Inserting the above small perturbations into the Navier-
Stokes-like equations �28� and �37�, applying Taylor expan-
sion, and neglecting nonlinear contributions we get the fol-
lowing system of algebraic equations:

�� + i
 i


i



�
+ 2�	 − 1� � + i
�2 + �

�
� +

�*
2

�
+ �	 − 1��1 − i
�*� 


�� �̄

V̄
� = �0

0
� . �39�

Here, the time is measured in units of �, the length in units of
1 / �̂, the velocity in units of 1 /��̂ and the vehicle density in
units of �̂, where �̂ is the maximum vehicular density. More-
over, we have introduced the abbreviation 
=�Ve and as-
sumed that the probability of passing takes the explicit form
�5�

p = 1 −
�

�̂
. �40�

The system of algebraic equations �39� has a nontrivial so-
lution if the determinant of the coefficients vanishes. This
condition leads to the dispersion relation

�2 + B���� − C��� = 0, �41�

where

B��� = 2i
�1 + �

�
� +

�*
2

�
+ �	 − 1��1 − i
�*� �42�

and

C��� = 
2��1 + �

�
� − �	 − 1��*	 + i
��	 − 1� −

�*
2

�
	 .

�43�

The dispersion relation �41� is satisfied for two complex
roots which can be determined analytically, i.e.,
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�±��� = −
B

2
±��B

2
�2

+ C . �44�

The Navier-Stokes-like traffic equations predicts an unstable
solution if the real part of the growth parameter of at least
one of the roots of the dispersion relation has a positive real
part, i.e., if

Re��+� 
 0 or Re��−� 
 0. �45�

In fact, we verify that Re��−��0 for all values of the free
parameters 
 and 	 in the dispersion relation. However the
root �+ shows some regions in which its real part becomes
positive, hence we have some instability regions. A note
must be said for the calculation of the range of values for the
parameter 	, which is the one introduced in the model for
the average desired velocity of drivers. First we notice that
the experimental data for the variance of the velocity show a
quadratic dependence with the average velocity, and for low
density the prefactor is almost constant �7,14�. This fact
agrees with our calculation in the sense that the velocity
variance we found is quadratic in the average velocity and
the prefactor is the dimensionless constant we call �. Hence,
the quantity � can be taken from the experimental data and
in this work we will use �=100. We can also infer from
relation �40� that the factor �1−p� in a homogeneous steady
state is only a function of the homogeneous density. On the
other hand, the empirical velocity-density relations allow us
to write the average velocity as Ve=Ve��e�=Vmax(�1
+exp��� / �̂−0.25� /0.06��−1−3.72�10−6) in such a way that
the dimensionless constant � is written only in terms of �e.
Hence, from Eq. �21� we can write 	��e�=1+�e�1
−p��Ve��e� /� which allow us the calculation of the quantity
	 we are looking for. In this way we can find the range of
values for 	 in the low density region, Fig. 1 shows its
resulting behavior. We notice that 	
1 as it should be ac-
cording to the requirements of our model, however though
the range of values is very short we must recall that it rep-
resents an average and in this sense it can be seen as a natu-
ral feature of this model. Also, it should be remembered that
the number of vehicles with a very big velocity tends to zero
consistently with the behavior of the distribution function.

Figures 2 and 3 illustrate the instability regions in the
�
 ,	� plane—given that the road has an infinite length—for
the values �0=10� and �0=20�, respectively. We notice that
the instability region shrinks as the value of the collective
relaxation time �0 grows. It means that �0 is a stabilization
factor and in the constitutive relation �35� we see that it is
also a measure of the viscosity in the system. Its origin being
the interaction term in the Paveri-Fontana equation and the
kind of BGK approximation we have made.

VII. NUMERICAL SIMULATION

In order to investigate the numerical solution of the
Navier-Stokes-like traffic equations we write �28� and �37� in
the following conservative form:

�u

�t
+

�F�u�
�x

= s�u� , �46�

where

u = � �

�V
�, F�u� = � �V

�V2 + P �, and

s�u� = � 0

�
	 − 1

�
V − ��1 − p�P 
 . �47�

For the explicit numerical simulation of the macroscopic
traffic equations �46� we discretize position and time on a

FIG. 1. The parameter 	 as a function of the vehicular
density.

FIG. 2. Instability regions for �0 /�=10.

FIG. 3. Instability regions for �0 /�=20.
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uniform grid with values xi= i�x�i=0,1 ,2 , . . . � and tn

=n�t�n=0,1 ,2 , . . . �, respectively. Hence, we can determine
ui

n=u�xi , tn� at the grid points by using finite difference meth-
ods �16–18�. Here, we apply the two-step Lax-Wendroff
method,

ui+1/2
n+1/2 =

1

2
�ui

n + ui+1
n −

�t

�x
�Fi+1

n − Fi
n�

+
�t

2
�si

n + si+1
n �� �predictor� , �48�

ui
n+1 = ui

n −
�t

�x
�Fi+1/2

n+1/2 − Fi−1/2
n+1/2�

+
�t

2
�si+1/2

n+1/2 + si−1/2
n+1/2� �corrector� . �49�

Numerical solutions of macroscopic traffic models �partial
differential equations� require the specification of the initial
and boundary conditions. For reasons of simplicity we have
used periodic boundary conditions, ��0, t�=��L , t� and
V�0, t�=V�L , t�, where L is the length of the road. As initial
conditions we have considered two cases.

Case 1: Let us consider a steady and homogeneous traffic
state plus a small perturbation on the average velocity which
reflects the fact that some vehicles drive a little faster, while
others move a little slower than the homogeneous steady

velocity. Accordingly the initial conditions for the density
and the velocity can be written as �7�

��x,0� = �e and V�x,0� = Ve��e� + �V sin�2�x

L
� .

�50�

The values of the model parameters taken for the implemen-
tation of the numerical method are �e=28 vehicles/km,
Ve��e�=84 km/h, �̂=140 vehicles/km, �V=0.84 km/h, �
=30 s, �0=300 s, and L=12 km. The obtained solution for
the density is shown in Fig. 4, whereas in Figs. 5 and 6 we
show the average velocity and the corresponding velocity
variance, respectively.

Case 2: We assume now a homogeneous steady traffic
state and add to the density a localized perturbation of am-
plitude �� so that the initial conditions are given by �17�

��x,0� = �e + ���cosh−2� x − x0

	+
�

−
	+

	−
cosh−2� x − x0 − �x0

	−
�	 �51�

and

FIG. 4. Spatiotemporal behavior of the vehicular density.

FIG. 5. Spatiotemporal behavior of the average velocity.

FIG. 6. Spatiotemporal behavior of the velocity variance.

FIG. 7. Spatiotemporal behavior of the vehicular density.
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��x,0�V�x,0� = �eVe��e� , �52�

where x0 and x0+�x0 denote the positions of the positive and
negative peaks of the perturbation with widths 	+ and 	−,
respectively. Here, we have taken the values for the model
parameters given before and ��=2 vehicles/km, x0=6 km,
	+=	−=500 m, and �x0=	++	−=1000 m. Figures 7–9
show the spatiotemporal behavior of the density, average ve-
locity, and velocity variance corresponding to this second
case.

In both cases we observe that an increase in the density at
a certain road position is related to a reduction of the average
velocity at the same point. We notice that the maximum den-
sity obtained corresponds to the region of low to moderate
densities, it does not go beyond 36 vehicles/km. In the first
case and for short times the changes in density are very
smooth but the velocity variance is sensible to the velocity
perturbation. In the second case both variables follow each
other. On the other hand, the maximum density is obtained
for distances larger than the maximum in the variance, it
means that a change in the variance precedes a maximum in
the density along the road. Also the peaks in the variance are
sharper than the corresponding ones in the density.

VIII. CONCLUDING REMARKS

The model presented in this work starts with the mesos-
copic approach for traffic flow problems based on the re-
duced Paveri-Fontana kinetic equation. The homogeneous
steady solution for a particular model in the average desired
velocity for the drivers is obtained and it constitutes the ref-
erence state to study the vehicular flow. Though the calcula-
tions are made for a specific model, it is realistic enough
since the drivers natural tendency corresponds to drive at a
faster speed than its actual one. In a kind of Chapman-
Enskog method to solve the reduced Paveri-Fontana equation
the zeroth order reference state is calculated by means of the

maximization of the informational entropy restricted by the
values of the density and the average velocity in the system.
To obtain the first-order distribution function we used the
reduced Paveri-Fontana equation with a relaxation time ap-
proximation for the interaction term. This procedure allowed
us to find a traffic pressure with a kind of Euler term in
which we have a proportionality of the variance with the
square of the average velocity, a fact which is consistent with
the experimental data. Also, in the first order there appears a
term proportional to the spatial derivative of the velocity, it is
interpreted as a Navier-Stokes viscosity term. The viscosity
is not a constant but depends on the state of the system
through the density, the average velocity and contains the
collective relaxation time introduced in the approximation
method.

The macroscopic equations for the density and the aver-
age velocity are classified as Navier-Stokes-like traffic equa-
tions. They have some instability regions obtained from a
linear stability analysis and the solutions for the density and
the average velocity show the qualitative characteristics ob-
tained for traffic models in the low density region. What we
mean is that our model predicts increases in the density fol-
lowed by a reduction in velocity. As we noticed before the
velocity variance precedes the growing in the density along
the road. However it is important to notice that the density is
always smaller than the maximum density, the average ve-
locity is always positive and the variance value is consistent
with the experimental data. Besides in this model we have
only the density and average velocity as independent vari-
ables, so in this sense it is the simplest model we can con-
struct in terms of two macroscopic variables.
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FIG. 9. Spatiotemporal behavior of the velocity variance.
FIG. 8. Spatiotemporal behavior of the average velocity.
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